DIURNAL AND SEASONAL CHANGES IN THE TRANSPIRATION RATE OF APPLE TREES

Monica FLEANCU¹

¹University of Pitesti

Abstract. The present work was undertaken to investigate relationships between diurnal and seasonal trends of environmental variables and transpiration of Idared, Golden Delicious and Jonathan Apple.

The seasonal course of transpiration was measured over a three years period (2003, 2004 and 2005); the diurnal course of transpiration was measured different days characterized by different light intensity, air humidity and air temperature.

For plants provided with the diurnal course has only maximum value, usually with one or two hours after 12 o'clock, on a sunny day. The diurnal course depends especially on the intensity of light on a days like one. On a cloudy day, the transpiration rate is lower. This happens because the clouds come between the light and the plants. Also, on such a day, the transpiration rate is lower due to the increasing air humidity.

In the spring, the transpiration rate has a significant increase, reaching the maximum value during summer. The maximum value can be registered in June and July when the light intensity is maximum, the days are longer and the soil has enough provisions of water.

Key words: transpiration, diurnal course, seasonal course, apple trees.

INTRODUCTION

Water use by plants is an important issue of study because water often limits the growth and establishment of plants in varying environments.

The transpiration process usually accounts for about 99% of the water used by plants whereas only 1% of water taken up by the plant is used in metabolic activities (Salisbury and Ross, 1992).

Transpiration is induced by evaporative demand resulting from net radiation absorbed by leaves and the drying power of the atmosphere, which in turn is related to wind speed and relative humidity (Monteith and Unsworth, 1990).

Stomata, through which CO_2 and water vapor diffuse into and out of the leaf, are involved in the regulation of both photosynthesis and transpiration (Jarvis and Morison, 1981).

The control of stomatal aperture involves state variables (e.g., leaf water potential and intercellular carbon dioxide concentration), interactions between processes (transpiration and photosynthetic rate), and is related to environmental conditions (Jones, 1992).

The present work was undertaken to investigate relationships between diurnal and seasonal trends of environmental variables and transpiration activities.

MATERIAL AND METHODS

Experiments were carried out at ICDP Maracineni (near Pitesti).

The rate of transpiration was estimated gravimetrically, of Idared, Golden Delicious and Jonathan apple. We also used: a thermometer for air temperature, a luxmeter for light intensity and a psychrometer for air humidity.

The seasonal course of transpiration was measured over a three years period (2003, 2004, 2005); the diurnal course of transpiration was measured different days (characterized by different light intensity, air humidity and air temperature).

One-way ANOVA was used to test the differences in the rate of transpiration among months or among hours (multiple comparisons: LSD test) (with SPSS 13,0 for Windows).

RESULTS AND DISCUSSION

Seasonal changes in the transpiration rate on Idared Apple are illustrated in Figure 1. In April the transpiration rate was 0,310 g $H_2O/dm^2/h$. the highest transpiration rate was found in July (1,258 g

 $H_2O/dm^2/h$). the transpiration rate decreased in august to a value of 0,618 g $H_2O/dm^2/h$. statistical results of the seasonal changes in the transpiration rate on Idared Apple are shown in Table 1.

For Golden Delicious Apple the highest transpiration rate was found in June (1,227 g $H_2O/dm^2/h$) (Figure 2), with significant differences compared to the other months (at the 0,05 level) (Table 2).

Seasonal changes in the transpiration rate on Jonathan Apple can be seen in Figure 3. The maximum value was registered in July $(1,322 \text{ g H}_2\text{O/dm}^2/\text{h})$. Statistical results are shown in Table 3.

Diurnal changes in the transpiration were determinated on the 24th of June 2005, 27th of July 2005 and 24th of August 2004.

On the 24th of June 2005 the maximum light intensity was 7525 lux, the relative humidity was around 90% and the maximum temperature was 21°C. It was a cloudy day and it rained in the afternoon.

So, for Idared Apple, at 9 o'clock the transpiration rate was $0,55 \text{ g H}_2\text{O/dm}^2/\text{h}$, at 13 o'clock $-0,53 \text{ g H}_2\text{O/dm}^2/\text{h}$ and at 17 o'clock $-0,34 \text{ g H}_2\text{O/dm}^2/\text{h}$. For Golden Delicious Apple, at 9 o'clock the transpiration rate was $0,44 \text{ g H}_2\text{O/dm}^2/\text{h}$, at 13 o'clock $-0,45 \text{ g H}_2\text{O/dm}^2/\text{h}$ and at 17 o'clock $-0,34 \text{ g H}_2\text{O/dm}^2/\text{h}$. For Jonathan Apple, at 9 o'clock the transpiration rate was $0,29 \text{ g H}_2\text{O/dm}^2/\text{h}$, at 13 o'clock $-0,44 \text{ g H}_2\text{O/dm}^2/\text{h}$ and at 17 o'clock $-0,32 \text{ g H}_2\text{O/dm}^2/\text{h}$. Given these conditions, the transpiration rate wasn't higher than $0,7 \text{ g H}_2\text{O/dm}^2/\text{h}$ (Figure 4). Using these data, we made the variance analysis of the transpiration rates. The results are in Table 4.

On the 27^{th} of July 2005 the light intensity was maxim, the relative humidity was around 50% in the afternoon and the maximum temperature was 33° C. It was a sunny day.

So, for Idared Apple, at 9 o'clock the transpiration rate was 1,25 g $H_2O/dm^2/h$, at 13 o'clock – 2,12 g $H_2O/dm^2/h$ and at 17 o'clock – 1,05 g $H_2O/dm^2/h$. For Golden Delicious Apple, at 9 o'clock the transpiration rate was 0,784 g $H_2O/dm^2/h$, at 13 o'clock – 5,406 g $H_2O/dm^2/h$ and at 17 o'clock – 2,474 g $H_2O/dm^2/h$. For Jonathan Apple, at 9 o'clock the transpiration rate was 1,095 g $H_2O/dm^2/h$, at 13 o'clock – 3,572 g $H_2O/dm^2/h$ and at 17 o'clock – 2,831 g $H_2O/dm^2/h$. Given these conditions, the maximum transpiration rate was around 6 g $H_2O/dm^2/h$ (Figure 5). Using these data, we made the variance analysis of the transpiration rates. The results are in Table 5.

On the 24th of August 2004 the maximum light intensity was 60000 lux, the relative humidity was around 60% in the afternoon and the maximum temperature was 25° C.

So, for Idared Apple, at 9 o'clock the transpiration rate was $0,50 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$, at 13 o'clock $-0,87 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$ and at 17 o'clock $-0,81 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$. For Golden Delicious Apple, at 9 o'clock the transpiration rate was $0,42 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$, at 13 o'clock $-0,81 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$ and at 17 o'clock $-0,77 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$. For Jonathan Apple, at 9 o'clock the transpiration rate was $0,63 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$, at 13 o'clock $-1,09 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$ and at 17 o'clock $-0,85 \text{ g } \text{H}_2\text{O/dm}^2/\text{h}$. Given these conditions, the maximum transpiration rate was around 1,4 g $\text{H}_2\text{O/dm}^2/\text{h}$ (Figure 6). Using these data, we made the variance analysis of the transpiration rates. The results are in Table 6.

CONCLUSIONS

For plants provided with the diurnal course has only maximum value, usually with one or two hours after 12 o'clock, on a sunny day. The diurnal course depends especially on the intensity of light on a days like one. On a cloudy day, the transpiration rate is lower. This happens because the clouds come between the light and the plants. Also, on such a day, the transpiration rate is lower due to the increasing air humidity.

In the spring, the transpiration rate has a significant increase, reaching the maximum value during summer. The maximum value can be registered in June and July when the light intensity is maximum, the days are longer and the soil has enough provisions of water.

REFERENCES

- Giuliani, R., Nerozzi, F., Magnanini, E., Corelli-Grappadelli, L., 1997, Influence of environmental and plant factors are canopy photosynthesis and transpiration of apple trees. Tree Physiology. 17. Heron Publishing – Victoria, Canada, P. 637-645.
- Jarvis, P.G., Morison, J.I.L., 1981, The control of transpiration and photosynthesis by the stomata. Stomatal Physiology. Eds. P.G. Jarvis and T.A. Mansfield. Cambridge University Press, Cambridge, U.K., P. 247-279.

Jones, H.G., 1992, *Plants and microclimate*, 2nd Edn. Cambridge University Press, Cambridge, U.K., 428 p.

Montheith, J.L., Unsworth, M.H., 1990, *Principles of environmental physics*, 2nd Edn. Edward Arnold, London, 291 p.

Salisbury, F.B., Ross, C.W., 1992, *Plant Physiology*. Fourth edition. Wadsworth publishing company, Belmont, California, 682 p.

Fig. 1. Seasonal changes in the transpiration rate on Idared Apple

Multiple Comparisons								
Dependent LSD	Variable: TRAN	SPIRATION-IDARE	ED					
		Mean		95% Confide	ence Interval			
		Difference	Sig.	Lower Bound	Upper Bound			
APRIL	MAY	-,240600*	,000	-,35758	-,12362			
	JUNE	-,895400*	,000	-1,01238	-,77842			
	JULY	-,947800*	,000	-1,06478	-,83082			
	AUGUST	-,308000*	,000	-,42498	-,19102			
MAY	APRIL	,240600*	,000	,12362	,35758			
	JUNE	-,654800*	,000	-,77178	-,53782			
	JULY	-,707200*	,000	-,82418	-,59022			
	AUGUST	-,067400	,256	-,18438	,04958			
JUNE	APRIL	,895400*	,000	,77842	1,01238			
	MAY	,654800*	,000	,53782	,77178			
	JULY	-,052400	,377	-,16938	,06458			
	AUGUST	,587400*	,000	,47042	,70438			
JULY	APRIL	,947800*	,000	,83082	1,06478			
	MAY	,707200*	,000	,59022	,82418			
	JUNE	,052400	,377	-,06458	,16938			
	AUGUST	,639800*	,000	,52282	,75678			
AUGUST	APRIL	,308000*	,000	,19102	,42498			
	MAY	,067400	,256	-,04958	,18438			
	JUNE	-,587400*	,000	-,70438	-,47042			
	JULY	-,639800*	,000	-,75678	-,52282			
*· The m	nean difference	is significant at the	.05 level.					

Table 1.	Statistical	results of	the se	easonal	changes	in the	transpirati	on rate c	on Idared	Appl	e

Fig. 2. Seasonal changes in the transpiration rate on Golden Delicious Apple

Table 2. Statistical results of the seasonal changes in the transpiration rate on Golden Delicious Ap	pple
---	------

I SD										
Mean 95% Confidence Interval										
		Difference	Sig.	Lower Bound	Upper Bound					
APRIL	MAY	-,053800	,167	-,13049	,02289					
	JUNE	-,969800*	,000	-1,04649	-,89311					
	JULY	-,583000*	,000	-,65969	-,50631					
	AUGUST	-,240000*	,000	-,31669	-,16331					
MAY	APRIL	,053800	,167	-,02289	,13049					
	JUNE	-,916000*	,000	-,99269	-,83931					
	JULY	-,529200*	,000	-,60589	-,45251					
	AUGUST	-,186200*	,000	-,26289	-,10951					
JUNE	APRIL	,969800*	,000	,89311	1,04649					
	MAY	,916000*	,000	,83931	,99269					
	JULY	,386800*	,000	,31011	,46349					
	AUGUST	,729800*	,000	,65311	,80649					
JULY	APRIL	,583000*	,000	,50631	,65969					
	MAY	,529200*	,000	,45251	,60589					
	JUNE	-,386800*	,000	-,46349	-,31011					
	AUGUST	,343000*	,000	,26631	,41969					
AUGUST	APRIL	,240000*	,000	,16331	,31669					
	MAY	,186200*	,000	,10951	,26289					
	JUNE	-,729800*	,000	-,80649	-,65311					
	JULY	-,343000*	,000	-,41969	-,26631					
*· The m	nean difference	is significant at the	.05 level.							

Fig. 3. Seasonal changes in the transpiration rate on Jonathan Apple

Table 3.	Statistical results	of the seasonal	changes in	the transpiration rat	e on Jonathan Apple
----------	---------------------	-----------------	------------	-----------------------	---------------------

Multiple Comparisons									
Dependent Variable: TRANSPIRATION-JONATHAN LSD									
		Mean		95% Confide	nce Interval				
		Difference	Sig.	Lower Bound	Upper Bound				
APRIL	MAY	-,072480	,339	-,22200	,07704				
	JUNE	-,860400*	,000	-1,00992	-,71088				
	JULY	-1,006000*	,000	-1,15552	-,85648				
	AUGUST	-,498400*	,000	-,64792	-,34888				
MAY	APRIL	,072480	,339	-,07704	,22200				
	JUNE	-,787920*	,000	-,93744	-,63840				
	JULY	-,933520*	,000	-1,08304	-,78400				
	AUGUST	-,425920*	,000	-,57544	-,27640				
JUNE	APRIL	,860400*	,000	,71088	1,00992				
	MAY	,787920*	,000	,63840	,93744				
	JULY	-,145600	,056	-,29512	,00392				
	AUGUST	,362000*	,000	,21248	,51152				
JULY	APRIL	1,006000*	,000	,85648	1,15552				
	MAY	,933520*	,000	,78400	1,08304				
	JUNE	,145600	,056	-,00392	,29512				
	AUGUST	,507600*	,000	,35808	,65712				
AUGUST	APRIL	,498400*	,000	,34888	,64792				
	MAY	,425920*	,000	,27640	,57544				
	JUNE	-,362000*	,000	-,51152	-,21248				
	JULY	-,507600*	,000	-,65712	-,35808				

Fig. 4. Diurnal changes in the transpiration rate on apple trees (A – Idared; B – Golden Delicious; C – Jonathan) (24 June 2005) (Error bars show mean +/-1.0 SD)

Multiple Comparisons									
LSD									
			95% Cont Interv	fidence /al					
Dependent Variable	TIME OF DAY (H)	TIME OF DAY (H)	Mean Difference	Sig.	Lower Bound	Upper Bound			
TRANSPIRATION-	9	13	,022800	,524	-,04840	,09400			
IDARED		17	,210200*	,000	,13900	,28140			
	13	9	-,022800	,524	-,09400	,04840			
		17	,187400*	,000	,11620	,25860			
	17	9	-,210200*	,000	-,28140	-,13900			
		13	-,187400*	,000	-,25860	-,11620			
TRANSPIRATION-	9	13	-,010950	,689	-,06538	,04348			
GOLDEN		17	,104200*	,000	,04977	,15863			
DELICOUS	13	9	,010950	,689	-,04348	,06538			
		17	,115150*	,000	,06072	,16958			
	17	9	-,104200*	,000	-,15863	-,04977			
		13	-,115150*	,000	-,16958	-,06072			
TRANSPIRATION-	9	13	-,151400*	,000	-,20546	-,09734			
JONATHAN		17	-,031000	,256	-,08506	,02306			
	13	9	,151400*	,000	,09734	,20546			
		17	,120400*	,000	,06634	,17446			
	17	9	,031000	,256	-,02306	,08506			
		13	-,120400*	,000	-,17446	-,06634			

Table 4. Statistical results of the diurnal changes in the transpiration rate on apple trees (24 June 2005)

Fig. 5. Diurnal changes in the transpiration rate on apple trees (A – Idared; B – Golden Delicious; C – Jonathan) (25 July 2005) (Error bars show mean +/-1.0 SD)

Multiple Comparisons									
LSD									
					95% Cor	nfidence			
	Interval								
	TIME OF	TIME OF	Mean		Lower	Upper			
Dependent Variable	DAY (H)	DAY (H)	Difference	Sig.	Bound	Bound			
TRANSPIRATION-	9	13	-,868800*	,000	-1,09106	-,64654			
IDARED		17	,205600	,069	-,01666	,42786			
	13	9	,868800*	,000	,64654	1,09106			
		17	1,074400*	,000	,85214	1,29666			
	17	9	-,205600	,069	-,42786	,01666			
		13	-1,074400*	,000	-1,29666	-,85214			
TRANSPIRATION-	9	13	-4,621600*	,000	-5,12244	-4,12076			
GOLDEN DELICOUS		17	-1,689400*	,000	-2,19024	-1,18856			
	13	9	4,621600*	,000	4,12076	5,12244			
		17	2,932200*	,000	2,43136	3,43304			
	17	9	1,689400*	,000	1,18856	2,19024			
		13	-2,932200*	,000	-3,43304	-2,43136			
TRANSPIRATION-	9	13	-2,477800*	,000	-3,21483	-1,74077			
JONATHAN		17	-1,736400*	,000	-2,47343	-,99937			
	13	9	2,477800*	,000	1,74077	3,21483			
		17	,741400*	,049	,00437	1,47843			
	17	9	1,736400*	,000	,99937	2,47343			
		13	-,741400*	,049	-1,47843	-,00437			
*. The mean differer	nce is signific	ant at the .05	5 level.						

Table 5. Statistical results of the diurnal changes in the transpiration rate on apple trees (25 July 2005)

Fig. 6. Diurnal changes in the transpiration rate on apple trees (A – Idared; B – Golden Delicious; C – Jonathan) (24 August 2004) (Error bars show mean +/-1.0 SD)

Multiple Comparisons								
LSD								
					95% Cor	nfidence		
					Inte	rval		
	TIME OF	TIME OF	Mean		Lower	Upper		
Dependent Variable	DAY (H)	DAY (H)	Difference	Sig.	Bound	Bound		
TRANSPIRATION-	9	13	-,365800*	,000	-,43861	-,29299		
IDARED		17	-,301400*	,000	-,37421	-,22859		
	13	9	,365800*	,000	,29299	,43861		
		17	,064400	,082	-,00841	,13721		
	17	9	,301400*	,000	,22859	,37421		
		13	-,064400	,082	-,13721	,00841		
TRANSPIRATION-	9	13	-,391590*	,000	-,48143	-,30175		
GOLDEN		17	-,351490*	,000	-,44133	-,26165		
DELICOUS	13	9	,391590*	,000	,30175	,48143		
		17	,040100	,375	-,04974	,12994		
	17	9	,351490*	,000	,26165	,44133		
		13	-,040100	,375	-,12994	,04974		
TRANSPIRATION-	9	13	-,460940*	,000	-,60541	-,31647		
JONATHAN		17	-,227840*	,003	-,37231	-,08337		
	13	9	,460940*	,000	,31647	,60541		
		17	,233100*	,002	,08863	,37757		
	17	9	,227840*	,003	,08337	,37231		
		13	-,233100*	,002	-,37757	-,08863		
*. The mean differe	ence is signifi	cant at the .05	level.					

Table 6. Statistical results of the diurnal changes in the transpiration rate on apple trees (24 August 2004)